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How long does it take for an isolated quantum system to
evolve to an orthogonal state? In a recent note in this
journal,! Vaidman complained that it is not easy to find
exact limits for this problem in the literature. It is the
purpose of this note to supply some historical background
and report some related results.

The earliest discussion of the above problem known to
me is the classic but apparently little-read article by Man-
delstam and Tamm of 1945.2 In this paper, Mandelstam
and Tamm prove the inequality,
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where |¢(0)) is the state at r=0 and AH

= (Hi) - (H)7 is the uncertainty in energy. Note that
AH is independent of time.

Mandelstam and Tamm derive this inequality in a very
simple manner, starting from their better-known® relation,
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Here, take A4 to be the projector on the state ¥(0), ie.,
A=|9(0))(¥(0)|. We obtain (A4)*=(4)(1—(4)),
with (4) = | ($(0) | ¢(#)) |%. Inequality (2) then becomes
more _transparent by substituting | (¢(0)|¥(¢?)) |2
=:cos’ ¢(t), so that it take the form,
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also obtained by Vaidman. Integration yields
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which upon resubstitution gives Eq. (1). This ineguality
was also obtained by Fleming* and Bhattacharyya.” If we
now take |4(z)) orthogonal to |#(0)), we obtain the limit
for the question posed by Vaidman: in order to reach an
orthogonal state, the system needs a time longer than m#/
2AH. But we can read off more than that from inequality
(1).

How long does it take until the nondecay probability
1 {(0) | ¥(8)) |2 is 37 (This time is usually called the half-
life of [4(0)).) The inequality tells us that this half-life is
greater than 7#i/4AH. Another interesting observation is
that the inequality implies that for short times the nonde-
cay probability must fall off more slowly than the parabola
1— (AHt/#)? (at least as long as AH is finite). This result
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is the root of the well-known quantum Zeno paradox.® For
yet another application, consider the “average lifetime”*>’
defined by

Tave = j | (1/1(0) |¢(t)> |2dl.

By integrating inequality (1) one finds* 7, AH>7/4,
which is only slightly less than the best possible bound
TuweDH>37572/25 obtained by Gislason, Sabelli and
Wood.’

However, there are cases where the Mandelstam-Tamm
inequality is not applicable. A notorious example is the
Breit—Wigner state where
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The reason why the Mandelstam-Tamm inequality is in-
applicable here is that AH is infinite, so that inequality (1)
gives a trivial bound only for r=0. As a consequence, the
nondecay rate for this state does not drop off quadratically
for small times. However, this is not to say that there is no
relationship between the uncertainty in energy and the ev-
olution of this state. In fact this state is the textbook fa-
vorite example for illustrating the uncertainty relation be-
tween lifetime and energy.

Indeed, the energy distribution for this state takes the
shape of a simple peak, whose width depends on the value
of y. Therefore, one usually replaces the standard deviation
AH in this case by a measure of uncertainty that is sensitive
to the width of this peak. The customary choice is the
width at half maximum. This gives 8E=1v, which, in this
example, happens to be inversely proportional to the life-
time of the state.

Thus it appears that AH can be a very unreasonable
measure of uncertainty: it can be very large even when the
distribution is very narrow. It is therefore desirable to have
some inequality that does not rely on the standard devia-
tion. In recent work® such an inequality has been derived.
Let |4(0)) be any state and take W,(E) to be the size of
the shortest interval W such that

f [(E|¥(0))|*dE=a.
4

Then W, (E) gives a reasonable measure for the uncer-
tainty in energy if a is less than but close to one (say
a=0.9). Note that W,(E) is always finite. Further, let Tg
be the minimal time it takes for |$(0)) to evolve to a state
|#(7)) such that
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Then one can show
B+1—a
TgW(E)>2% arccos(T) , for B<2a—1. (3)

This result is actually easy to obtain by using the
Mandelstam-Tamm inequality. The idea is simply to
search for a decomposition of the initial state into two
parts, one with large amplitude but limited decay rate, and
another part which can decay rapidly, but with small am-
plitude. In fact, let Py be the projector on the energy in-
terval W mentioned above, and Py be the projector on its
complement. We can then write the state |¢(#)) as

[9()) =Py | ()} + Pye| P(2))
= o | Pp()) + J1—a|¥pe(1)),

where ¥ and - are normalized. Since the projectors Py,
and Py- project onto disjoint intervals we have Py Py
= 0, and from this one can easily deduce

W0 |¢(2)) =alPpp(0) |Pu(1))
+ (1=a) (Ppe(0) | Pye(2)). (4)

For the first term on the right-hand side, we know from the
Mandelstam-Tamm result that it cannot decay faster than
a cos(AwHt)/fi, where AyH is now the standard devia-
tion for the state ¥. And, by construction, the energy
distribution of this state is contained in the interval W,
Therefore, AyH< W, (E)/2. The second term in (4) may
change much more rapidly, but this term will never be-
come less than — (1 —a). Thus we obtain:
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which gives (3) above. It can also be shown that this ine-
quality is sharp, i.e., the constant in the right-hand side is
the best possible.

To illustrate this inequality, let us return to the Breit—
Wigner state. Here, we have
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W, (E) =2y tan ( 5 ) Tg=—2#y"'log B.

For choices in the range $~0.3-0.5, a~0.7-0.9 the prod-
uct W,(E)7gis roughly ten times the theoretical minimum
of inequality (3).

The main virtue of this inequality is that it shows that
there is a general lower bound for the lifetime of all quan-
tum states in terms of reasonable measures of the uncer-
tainty in energy even if the standard deviation is infinite.
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SUBTLE IS THE LORD

One of Einstein’s famous quotations, which you can even see in the old Fine Hall above the
mantelpiece, reads in German, “Raffiniert ist der Herr Gott aber boshaft ist Er nicht,” of which
an English translation may read as follows: “God is subtle, but He isn’t malicious.” And the
interpretation usually was: “It might be difficult to find the laws of nature, but it is not
impossible.” There is also a somewhat different interpretation, because once Einstein said to us,
“I have had second thoughts. Maybe God is malicious after all.” But what he meant was
something very specific. It was that God makes us believe that we understand something, when
in reality we are very far from it. And Einstein was very much concerned that one should not
be uncritical enough to be misled in this way.

Valentine Bargmann, in Some Strangeness in the Proportion, edited by Harry Woolf (Addison-Wesley, Reading, MA,
1980), pp. 480-481.
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